Search results for "Carleson measure"

showing 3 items of 3 documents

Hardy spaces and quasiconformal maps in the Heisenberg group

2023

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

Hardy spacesMathematics - Complex VariablesMetric Geometry (math.MG)quasiconformal mapsHeisenberg groupPrimary: 30L10 Secondary: 30C65 30H10Functional Analysis (math.FA)Mathematics - Functional AnalysiskvasikonformikuvauksetMathematics - Metric GeometryFOS: MathematicsHardyn avaruudetComplex Variables (math.CV)Carleson measuresAnalysis
researchProduct

Uniform rectifiability and ε-approximability of harmonic functions in Lp

2020

Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that pointwise, L∞ and Lp type ε-approximability properties of harmonic functions are all equivalent and they characterize uniform rectifiability for codimension 1 Ahlfors–David regular sets. Our results and techniques are generalizations of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell and S. Mayboroda. peerReviewed

ε-approximabilitypotentiaaliteoriaharmonic functions.mittateoriaCarleson measuresharmoninen analyysiuniform rectifiability
researchProduct

Uniform rectifiability implies Varopoulos extensions

2020

We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…

Dirichlet problemosittaisdifferentiaaliyhtälötPure mathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsepsilon-approximabilityBoundary (topology)Codimensionharmonic measureharmoninen analyysiMeasure (mathematics)uniform rectifiabilityCarleson measureMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsNorm (mathematics)solvability of the Dirichlet problemClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereRectifiable setCarleson measure estimateAnalysis of PDEs (math.AP)MathematicsBMO
researchProduct